Solitary Wave Solutions for a Time-Fraction Generalized Hirota-Satsuma Coupled KdV Equation by a New Analytical Technique
نویسندگان
چکیده
A new iterative technique is employed to solve a system of nonlinear fractional partial differential equations. This new approach requires neither Lagrange multiplier like variational iteration method VIM nor polynomials like Adomian’s decomposition method ADM so that can be more easily and effectively established for solving nonlinear fractional differential equations, and will overcome the limitations of these methods. The obtained numerical results show good agreement with those of analytical solutions. The fractional derivatives are described in Caputo sense.
منابع مشابه
Applications of He’s Variational Principle method and the Kudryashov method to nonlinear time-fractional differential equations
In this paper, we establish exact solutions for the time-fractional Klein-Gordon equation, and the time-fractional Hirota-Satsuma coupled KdV system. The He’s semi-inverse and the Kudryashov methods are used to construct exact solutions of these equations. We apply He’s semi-inverse method to establish a variational theory for the time-fractional Klein-Gordon equation, and the time-fractiona...
متن کاملNew explicit exact solutions for the generalized coupled Hirota-Satsuma KdV system
In this paper, we study the generalized coupled Hirota–Satsuma KdV system by using the two new improved projective Riccati equations method. As a result, many explicit exact solutions, which contain new solitary wave solutions, periodic wave solutions and combined formal solitary wave solutions and combined formal periodic wave solutions are obtained. c © 2007 Published by Elsevier Ltd
متن کاملSoliton Solutions of the Time Fractional Generalized Hirota-satsuma Coupled KdV System
In this present study, the exact traveling wave solutions to the time fractional generalized Hirota-Satsuma coupled KdV system are studied by using the direct algebraic method. The exact and complex solutions obtained during the present investigation are new, whereas literature survey has revealed generalizations of solutions. The solutions obtained during the present work demonstrate the fact ...
متن کاملWeierstrass semi-rational expansion method and new doubly periodic solutions of the generalized Hirota-Satsuma coupled KdV system
In the paper, with the aid of symbolic computation, we investigate the generalized Hirota–Satsuma coupled KdV system via our Weierstrass semi-rational expansion method presented recently using the rational expansion of Weierstrass elliptic function and its first-order derivative. As a consequence, three families of newWeierstrass elliptic function solutions via Weierstrass elliptic function }(n...
متن کاملNew explicit and Soliton Wave Solutions of Some Nonlinear Partial Differential Equations with Infinite Series Method
To start with, having employed transformation wave, some nonlinear partial differential equations have been converted into an ODE. Then, using the infinite series method for equations with similar linear part, the researchers have earned the exact soliton solutions of the selected equations. It is required to state that the infinite series method is a well-organized method for obtaining exact s...
متن کامل